Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Environ Health Perspect ; 132(4): 47007, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619879

RESUMO

BACKGROUND: Environmental pollutants, including polychlorinated biphenyls (PCBs) have been implicated in the pathogenesis of liver disease. Our group recently demonstrated that PCB126 promoted steatosis, hepatomegaly, and modulated intermediary metabolism in a rodent model of alcohol-associated liver disease (ALD). OBJECTIVE: To better understand how PCB126 promoted ALD in our previous model, the current study adopts multiple omics approaches to elucidate potential mechanistic hypotheses. METHODS: Briefly, male C57BL/6J mice were exposed to 0.2mg/kg polychlorinated biphenyl (PCB) 126 or corn oil vehicle prior to ethanol (EtOH) or control diet feeding in the chronic-binge alcohol feeding model. Liver tissues were collected and prepared for mRNA sequencing, phosphoproteomics, and inductively coupled plasma mass spectrometry for metals quantification. RESULTS: Principal component analysis showed that PCB126 uniquely modified the transcriptome in EtOH-fed mice. EtOH feeding alone resulted in >4,000 differentially expressed genes (DEGs), and PCB126 exposure resulted in more DEGs in the EtOH-fed group (907 DEGs) in comparison with the pair-fed group (503 DEGs). Top 20 significant gene ontology (GO) biological processes included "peptidyl tyrosine modifications," whereas top 25 significantly decreasing GO molecular functions included "metal/ion/zinc binding." Quantitative, label-free phosphoproteomics and western blot analysis revealed no major significant PCB126 effects on total phosphorylated tyrosine residues in EtOH-fed mice. Quantified hepatic essential metal levels were primarily significantly lower in EtOH-fed mice. PCB126-exposed mice had significantly lower magnesium, cobalt, and zinc levels in EtOH-fed mice. DISCUSSION: Previous work has demonstrated that PCB126 is a modifying factor in metabolic dysfunction-associated steatotic liver disease (MASLD), and our current work suggests that pollutants also modify ALD. PCB126 may, in part, be contributing to the malnutrition aspect of ALD, where metal deficiency is known to contribute and worsen prognosis. https://doi.org/10.1289/EHP14132.


Assuntos
Poluentes Ambientais , Fígado Gorduroso , Hepatopatias Alcoólicas , Bifenilos Policlorados , Masculino , Camundongos , Animais , Multiômica , Camundongos Endogâmicos C57BL , Etanol/toxicidade , Etanol/metabolismo , Fígado/metabolismo , Bifenilos Policlorados/toxicidade , Bifenilos Policlorados/metabolismo , Hepatopatias Alcoólicas/etiologia , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/patologia , Poluentes Ambientais/toxicidade , Poluentes Ambientais/metabolismo , Zinco/metabolismo , Tirosina/metabolismo
2.
Food Chem Toxicol ; 180: 114024, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37666290

RESUMO

Chlordane is an organochlorine pesticide (OCP) that is environmentally persistent. Although exposures to OCPs including chlordane have been associated with elevated liver enzymes, current knowledge on OCPs' contribution to toxicant-associated steatotic liver disease (TASLD) and underlying sex-specific metabolic/endocrine disruption are still widely limited. Therefore, the objective of this study was to investigate the sex-dependent effects of chlordane in the context of TASLD. Age-matched male and female C57BL/6 mice were exposed to chlordane (20 mg/kg, one-time oral gavage) for two weeks. Female mice generally exhibited lower bodyfat content but more steatosis and hepatic lipid levels, consistent with increased hepatic mRNA levels of genes involved in lipid synthesis and uptake. Surprisingly, chlordane-exposed females demonstrated lower hepatic cholesterol levels. With regards to metabolic disruption, chlordane exposure decreased expression of genes involved in glycogen and glucose metabolism (Pklr, Gck), while chlordane-exposed females also exhibited decreased gene expression of HNF4A, an important regulator of liver identity and function. In terms of endocrine endpoints, chlordane augmented plasma testosterone levels in males. Furthermore, chlordane activated hepatic xenobiotic receptors, including the constitutive androstane receptor, in a sex-dependent manner. Overall, chlordane exposure led to altered hepatic energy metabolism, and potential chlordane-sex interactions regulated metabolic/endocrine disruption and receptor activation outcomes.


Assuntos
Fígado Gorduroso , Hidrocarbonetos Clorados , Masculino , Feminino , Camundongos , Animais , Clordano/toxicidade , Clordano/metabolismo , Camundongos Endogâmicos C57BL , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/metabolismo , Fígado , Substâncias Perigosas , Lipídeos , Metabolismo Energético
3.
Environ Toxicol Pharmacol ; 103: 104260, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37683712

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is associated with human environmental exposure to polychlorinated biphenyls (PCBs). Alternative splicing (AS) is dysregulated in steatotic liver disease and is regulated by splicing factors (SFs) and N-6 methyladenosine (m6A) modification. Here integrated analysis of hepatic mRNA-sequencing data was used to identify differentially expressed SFs and differential AS events (ASEs) in the livers of high fat diet-fed C57BL/6 J male mice exposed to Aroclor1260, PCB126, Aroclor1260 + PCB126, or vehicle control. Aroclor1260 + PCB126 co-exposure altered 100 SFs and replicate multivariate analysis of transcript splicing (rMATS) identified 449 ASEs in 366 genes associated with NAFLD pathways. These ASEs were similar to those resulting from experimental perturbations in m6A writers, readers, and erasers. These results demonstrate specific hepatic SF and AS regulatory mechanisms are disrupted by HFD and PCB exposures, contributing to the expression of altered isoforms that may play a role in NAFLD progression to NASH.

4.
Metabolites ; 13(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37623845

RESUMO

Many pesticides have been identified as endocrine and metabolism-disrupting chemicals with hepatotoxic effects. However, data are limited for insecticides in the n-methyl carbamate class, including methomyl. Here, we investigate the liver and systemic metabolic effects of methomyl in a mouse model. We hypothesize that methomyl exposure will disrupt xenobiotic and intermediary metabolism and promote hepatic steatosis in mice. Male C57BL/6 mice were exposed daily to 0-5 mg/kg methomyl for 18 days. Mice were fed water and regular chow diet ad libitum. Metabolic phenotyping was performed, and tissue samples were collected. Effects were generally greatest at the highest methomyl dose, which induced Cyp1a2. Methomyl decreased whole body weight while the liver:body weight and testes:body weight ratios were increased. Hepatic steatosis increased while plasma LDL decreased. Fasting blood glucose and the glucose tolerance test area under the curve decreased along with hepatic glycogen stores. Methomyl, however, did not increase liver oxidative stress or injury. Collectively, these data demonstrate that methomyl disrupts hepatic xenobiotic and intermediary metabolism while increasing the testes:body weight ratio, suggesting that it may be an endocrine disrupting chemical. Besides methomyl's known action in cholinesterase inhibition, it may be involved in aryl hydrocarbon receptor activation. The potential impact of n-methyl carbamate insecticides on metabolic health and diseases, including toxicant-associated steatotic liver disease (TASLD), warrants further investigation.

5.
Artigo em Inglês | MEDLINE | ID: mdl-37426695

RESUMO

Introduction: Polychlorinated biphenyls (PCBs) are persistent environmental toxicants that have been implicated in numerous health disorders including liver diseases such as non-alcoholic fatty liver disease (NAFLD). Toxicant-associated NAFLD, also known as toxicant-associated fatty liver disease (TAFLD), consists of a spectrum of disorders ranging from steatosis and steatohepatitis to fibrosis and hepatocellular carcinoma. Previously, our group demonstrated that 12-week exposure to the PCB mixture, Aroclor 1260, exacerbated steatohepatitis in high-fat diet (HFD)-fed mice; however, the longer-term effects of PCBs on TAFLD remain to be elucidated. This study aims to examine the longer-term effects of Aroclor 1260 (>30 weeks) in a diet-induced obesity model to better understand how duration of exposure can impact TAFLD. Methods: Male C57BL/6 mice were exposed to Aroclor 1260 (20 mg/kg) or vehicle control by oral gavage at the beginning of the study period and fed either a low-fat diet (LFD) or HFD throughout the study period. Results: Aroclor 1260 exposure (>30 weeks) led to steatohepatitis only in LFD-fed mice. Several Aroclor 1260 exposed LFD-fed mice also developed hepatocellular carcinoma (25%), which was absent in HFD-fed mice. The LFD+Aroclor1260 group also exhibited decreased hepatic Cyp7a1 expression and increased pro-fibrotic Acta2 expression. In contrast, longer term Aroclor 1260 exposure in conjunction with HFD did not exacerbate steatosis or inflammatory responses beyond those observed with HFD alone. Further, hepatic xenobiotic receptor activation by Aroclor 1260 was absent at 31 weeks post exposure, suggesting PCB redistribution to the adipose and other extra-hepatic tissues with time. Discussion: Overall, the results demonstrated that longer-term PCB exposure worsened TAFLD outcomes independent of HFD feeding and suggests altered energy metabolism as a potential mechanism fueling PCB mediated toxicity without dietary insult. Additional research exploring mechanisms for these longer-term PCB mediated toxicity in TAFLD is warranted.

6.
Environ Toxicol Pharmacol ; 100: 104138, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37137421

RESUMO

Chronic environmental exposure to polychlorinated biphenyls (PCBs) is associated with non-alcoholic fatty liver disease (NAFLD) and exacerbated by a high fat diet (HFD). Here, chronic (34 wks.) exposure of low fat diet (LFD)-fed male mice to Aroclor 1260 (Ar1260), a non-dioxin-like (NDL) mixture of PCBs, resulted in steatohepatitis and NAFLD. Twelve hepatic RNA modifications were altered with Ar1260 exposure including reduced abundance of 2'-O-methyladenosine (Am) and N(6)-methyladenosine (m6A), in contrast to increased Am in the livers of HFD-fed, Ar1260-exposed mice reported previously. Differences in 13 RNA modifications between LFD- and HFD- fed mice, suggest that diet regulates the liver epitranscriptome. Integrated network analysis of epitranscriptomic modifications identified a NRF2 (Nfe2l2) pathway in the chronic, LFD, Ar1260-exposed livers and an NFATC4 (Nfatc4) pathway for LFD- vs. HFD-fed mice. Changes in protein abundance were validated. The results demonstrate that diet and Ar1260 exposure alter the liver epitranscriptome in pathways associated with NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Bifenilos Policlorados , Masculino , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/metabolismo , Bifenilos Policlorados/metabolismo , Fígado/metabolismo , Dieta Hiperlipídica , RNA , Camundongos Endogâmicos C57BL
7.
J Endocrinol ; 258(1)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37074385

RESUMO

Based on biological sex, the consequential health outcomes from exposures to environmental chemicals or toxicants can differ in disease pathophysiology, progression, and severity. Due to basal differences in cellular and molecular processes resulting from sexual dimorphism of organs including the liver and additional factors influencing 'gene-environment' interactions, males and females can exhibit different responses to toxicant exposures. Associations between environmental/occupational chemical exposures and fatty liver disease (FLD) have been well-acknowledged in human epidemiologic studies and their causal relationships demonstrated in experimental models. However, studies related to sex differences in liver toxicology are still limited to draw any inferences on sex-dependent chemical toxicity. The purpose of this review is to highlight the present state of knowledge on the existence of sex differences in toxicant-associated FLD (TAFLD), discuss potential underlying mechanisms driving these differences, implications of said differences on disease susceptibility, and emerging concepts. Chemicals of interest include various categories of pollutants that have been investigated in TAFLD, namely persistent organic pollutants, volatile organic compounds, and metals. Insight into research areas requiring further development is also discussed, with the objective of narrowing the knowledge gap on sex differences in environmental liver diseases. Major conclusions from this review exercise are that biological sex influences TAFLD risks, in part due to (i) toxicant disruption of growth hormone and estrogen receptor signaling, (ii) basal sex differences in energy mobilization and storage, and (iii) differences in chemical metabolism and subsequent body burden. Finally, further sex-dependent toxicological assessments are warranted for the development of sex-specific intervention strategies.


Assuntos
Poluentes Ambientais , Hepatopatia Gordurosa não Alcoólica , Feminino , Humanos , Masculino , Caracteres Sexuais , Poluentes Ambientais/toxicidade , Modelos Teóricos
8.
Toxicol Appl Pharmacol ; 468: 116514, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37061008

RESUMO

BACKGROUND & AIMS: Vinyl chloride (VC) monomer is a volatile organic compound commonly used in industry. At high exposure levels, VC causes liver cancer and toxicant-associated steatohepatitis. However, lower exposure levels (i.e., sub-regulatory exposure limits) that do not directly damage the liver, enhance injury caused by Western diet (WD). It is still unknown if the long-term impact of transient low-concentration VC enhances the risk of liver cancer development. This is especially a concern given that fatty liver disease is in and of itself a risk factor for the development of liver cancer. METHODS: C57Bl/6 J mice were fed WD or control diet (CD) for 1 year. During the first 12 weeks of feeding only, mice were also exposed to VC via inhalation at sub-regulatory limit concentrations (<1 ppm) or air for 6 h/day, 5 days/week. RESULTS: Feeding WD for 1 year caused significant hepatic injury, which was exacerbated by VC. Additionally, VC increased the number of tumors which ranged from moderately to poorly differentiated hepatocellular carcinoma (HCC). Transcriptomic analysis demonstrated VC-induced changes in metabolic but also ribosomal processes. Epitranscriptomic analysis showed a VC-induced shift of the modification pattern that has been associated with metabolic disease, mitochondrial dysfunction, and cancer. CONCLUSIONS: These data indicate that VC sensitizes the liver to other stressors (e.g., WD), resulting in enhanced tumorigenesis. These data raise concerns about potential interactions between VC exposure and WD. It also emphasizes that current safety restrictions may be insufficient to account for other factors that can influence hepatotoxicity.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Cloreto de Vinil , Camundongos , Animais , Cloreto de Vinil/toxicidade , Cloreto de Vinil/metabolismo , Transcriptoma , Carcinoma Hepatocelular/patologia , Dieta Ocidental , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Carcinogênese/metabolismo , Transformação Celular Neoplásica/metabolismo
9.
Environ Res ; 221: 115228, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36610539

RESUMO

While occupational exposures to volatile organic compounds (VOCs) have been linked to steatohepatitis and liver cancer in industrial workers, recent findings have also positively correlated low-dose, residential VOC exposures with liver injury markers. VOC sources are numerous; factors including biological make up (sex), socio-cultural constructs (gender, race) and lifestyle (smoking) can influence both VOC exposure levels and disease outcomes. Therefore, the current study's objective is to investigate how sex and race influence associations between residential VOC exposures and liver injury markers particularly in smokers vs. nonsmokers. Subjects (n = 663) were recruited from residential neighborhoods; informed consent was obtained. Exposure biomarkers included 16 urinary VOC metabolites. Serological disease biomarkers included liver enzymes, direct bilirubin, and hepatocyte death markers (cytokeratin K18). Pearson correlations and generalized linear models were conducted. Models were adjusted for common liver-related confounders and interaction terms. The study population constituted approximately 60% females (n = 401) and 40% males (n = 262), and a higher percent of males were smokers and/or frequent drinkers. Both sexes had a higher percent of White (75% females, 82% males) vs. Black individuals. Positive associations were identified for metabolites of acrolein, acrylamide, acrylonitrile, butadiene, crotonaldehyde, and styrene with alkaline phosphatase (ALP), a biomarker for cholestatic injury; and for the benzene metabolite with bilirubin; only in females. These associations were retained in female smokers. Similar associations were also observed between these metabolites and ALP only in White individuals (n = 514). In Black individuals (n = 114), the styrene metabolite was positively associated with aspartate transaminase. Interaction models indicated that positive associations for acrylamide/crotonaldehyde metabolites with ALP in females were dose-dependent. Most VOC associations with K18 markers were negative in this residential population. Overall, the findings demonstrated that biological sex, race, and smoking status influence VOC effects on liver injury and underscored the role of biological-social-lifestyle factor(s) interactions when addressing air pollution-related health disparities.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Masculino , Humanos , Feminino , Compostos Orgânicos Voláteis/análise , Poluentes Atmosféricos/análise , Fígado/química , Biomarcadores/urina , Acrilamidas , Estirenos
10.
Environ Res ; 216(Pt 3): 114686, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36341798

RESUMO

Exposure to polychlorinated biphenyls (PCBs) has been associated with liver injury in human cohorts and with nonalcoholic steatohepatitis (NASH) in mice fed a high fat diet (HFD). N (6)-methyladenosine (m6A) modification of mRNA regulates transcript fate, but the contribution of m6A modification on the regulation of transcripts in PCB-induced steatosis and fibrosis is unknown. This study tested the hypothesis that PCB and HFD exposure alters the levels of m6A modification in transcripts that play a role in NASH in vivo. Male C57Bl6/J mice were fed a HFD (12 wks) and administered a single oral dose of Aroclor1260, PCB126, or Aroclor1260 + PCB126. Genome-wide identification of m6A peaks was accomplished by m6A mRNA immunoprecipitation sequencing (m6A-RIP) and the mRNA transcriptome identified by RNA-seq. Exposure of HFD-fed mice to Aroclor1260 decreased the number of m6A peaks and m6A-containing genes relative to PCB vehicle control whereas PCB126 or the combination of Aroclor1260 + PCB126 increased m6A modification frequency. ∼41% of genes had one m6A peak and ∼49% had 2-4 m6A peaks. 117 m6A peaks were common in the four experimental groups. The Aroclor1260 + PCB126 exposure group showed the highest number (52) of m6A-peaks. qRT-PCR confirmed enrichment of m6A-containing fragments of the Apob transcript with PCB exposure. A1cf transcript abundance, m6A peak count, and protein abundance was increased with Aroclor1260 + PCB126 co-exposure. Irrespective of the PCB type, all PCB groups exhibited enriched pathways related to lipid/lipoprotein metabolism and inflammation through the m6A modification. Integrated analysis of m6A-RIP-seq and mRNA-seq identified 242 differentially expressed genes (DEGs) with increased or reduced number of m6A peaks. These data show that PCB exposure in HFD-fed mice alters the m6A landscape offering an additional layer of regulation of gene expression affecting a subset of gene responses in NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Bifenilos Policlorados , Masculino , Camundongos , Humanos , Animais , Bifenilos Policlorados/toxicidade , Bifenilos Policlorados/metabolismo , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/genética , Metilação , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
11.
Alcohol Clin Exp Res (Hoboken) ; 47(1): 60-75, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36377258

RESUMO

BACKGROUND: The prevalence of alcohol-associated liver disease (ALD), a subtype of fatty liver disease (FLD), continues to rise. ALD is a major cause of preventable death. Polychlorinated biphenyl (PCB) 126 is an environmentally relevant, dioxin-like pollutant whose negative metabolic effects have been well documented. In human and animal studies, PCB has been associated with the severity of nonalcoholic fatty liver disease (NAFLD). However, few studies have investigated whether exposures to environmental toxicants can worsen ALD. Thus, the objective of the current study was to develop an alcohol-plus-toxicant model to study how an environmental pollutant, PCB 126, impacts rodent ALD pathology. METHODS: Briefly, male C57BL/6J mice were exposed to 0.2 mg/kg PCB 126 or corn oil vehicle four days prior to ethanol feeding using the chronic-binge (10-plus-one) model. RESULTS: Concentrations of macromolecules, including hepatic lipids, carbohydrates, and protein (albumin) were impacted. Exposure to PCB 126 exacerbated hepatic steatosis and hepatomegaly in mice exposed to the chemical and fed an ethanol diet. Gene expression and the analysis of blood chemistry showed a potential net increase and retention of hepatic lipids and reductions in lipid oxidation and clearance capabilities. Depletion of glycogen and glucose was evident, which contributes to disease progression by generating systemic malnutrition. Granulocytic immune infiltrates were present but driven solely by ethanol feeding. Hepatic albumin gene expression and plasma levels were decreased by ~50% indicating a potential compromise of liver function. Finally, gene expression analyses indicated that the aryl hydrocarbon receptor and constitutive androstane receptor were activated by PCB 126 and ethanol, respectively. CONCLUSIONS: Various environmental toxicants are known to modify or enhance FLD in high-fat diet models. Findings from the present study suggest that they interact with other lifestyle factors such as alcohol consumption to reprogram intermediary metabolism resulting in exacerbated ethanol-associated systemic malnutrition in ALD.


Assuntos
Poluentes Ambientais , Hepatopatias Alcoólicas , Desnutrição , Hepatopatia Gordurosa não Alcoólica , Bifenilos Policlorados , Humanos , Masculino , Camundongos , Animais , Bifenilos Policlorados/metabolismo , Bifenilos Policlorados/farmacologia , Poluentes Ambientais/metabolismo , Poluentes Ambientais/farmacologia , Roedores , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatias Alcoólicas/metabolismo , Dieta Hiperlipídica , Etanol/farmacologia , Lipídeos/farmacologia , Desnutrição/metabolismo , Desnutrição/patologia
12.
Environ Toxicol Pharmacol ; 94: 103928, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35803474

RESUMO

Exposure to high fat diet (HFD) and persistent organic pollutants including polychlorinated biphenyls (PCBs) is associated with liver injury in human populations and non-alcoholic fatty liver disease (NAFLD) and steatohepatitis (NASH) in animal models. Previously, exposure of HFD-fed male mice to the non-dioxin-like (NDL) PCB mixture Aroclor1260, dioxin-like (DL) PCB126, or Aroclor1260 + PCB126 co-exposure caused toxicant-associated steatohepatitis (TASH) and differentially altered the liver proteome. Here unbiased mRNA and miRNA sequencing (mRNA- and miRNA- seq) was used to identify biological pathways altered in these liver samples. Fewer transcripts and miRs were up- or down- regulated by PCB126 or Aroclor1260 compared to the combination, suggesting that crosstalk between the receptors activated by these PCBs amplifies changes in the transcriptome. Pathway enrichment analysis identified "positive regulation of Wnt/ß-catenin signaling" and "role of miRNAs in cell migration, survival, and angiogenesis" for differentially expressed mRNAs and miRNAs, respectively. We evaluated the five miRNAs increased in human plasma with PCB exposure and suspected TASH and found that miR-192-5p was increased with PCB exposure in mouse liver. Although we observed little overlap between differentially expressed mRNA transcripts and proteins, biological pathway-relevant PCB-induced miRNA-mRNA and miRNA-protein inverse relationships were identified that may explain protein changes. These results provide novel insights into miRNA and mRNA transcriptome changes playing direct and indirect roles in the functional protein pathways in PCB-related hepatic lipid accumulation, inflammation, and fibrosis in a mouse model of TASH and its relevance to human liver disease in exposed populations.


Assuntos
MicroRNAs , Hepatopatia Gordurosa não Alcoólica , Bifenilos Policlorados , Animais , Modelos Animais de Doenças , Humanos , Fígado/metabolismo , Masculino , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Bifenilos Policlorados/metabolismo , Bifenilos Policlorados/toxicidade , RNA Mensageiro/metabolismo
13.
Environ Health Perspect ; 130(1): 17003, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34989596

RESUMO

BACKGROUND: Polychlorinated biphenyl (PCB) exposures have been associated with liver injury in human cohorts, and steatohepatitis with liver necrosis in model systems. MicroRNAs (miRs) maintain cellular homeostasis and may regulate the response to environmental stress. OBJECTIVES: We tested the hypothesis that specific miRs are associated with liver disease and PCB exposures in a residential cohort. METHODS: Sixty-eight targeted hepatotoxicity miRs were measured in archived serum from 734 PCB-exposed participants in the cross-sectional Anniston Community Health Survey. Necrotic and other liver disease categories were defined by serum keratin 18 (K18) biomarkers. Associations were determined between exposure biomarkers (35 ortho-substituted PCB congeners) and disease biomarkers (highly expressed miRs or previously measured cytokines), and Ingenuity Pathway Analysis was performed. RESULTS: The necrotic liver disease category was associated with four up-regulated miRs (miR-99a-5p, miR-122-5p, miR-192-5p, and miR-320a) and five down-regulated miRs (let-7d-5p, miR-17-5p, miR-24-3p, miR-197-3p, and miR-221-3p). Twenty-two miRs were associated with the other liver disease category or with K18 measurements. Eleven miRs were associated with 24 PCBs, most commonly congeners with anti-estrogenic activities. Most of the exposure-associated miRs were associated with at least one serum hepatocyte death, pro-inflammatory cytokine or insulin resistance bioarker, or with both. Within each biomarker category, associations were strongest for the liver-specific miR-122-5p. Pathways of liver toxicity that were identified included inflammation/hepatitis, hyperplasia/hyperproliferation, cirrhosis, and hepatocellular carcinoma. Tumor protein p53 and tumor necrosis factor α were well integrated within the top identified networks. DISCUSSION: These results support the human hepatotoxicity of environmental PCB exposures while elucidating potential modes of PCB action. The MiR-derived liquid liver biopsy represents a promising new technique for environmental hepatology cohort studies. https://doi.org/10.1289/EHP9467.


Assuntos
MicroRNA Circulante , Hepatopatias , MicroRNAs , Bifenilos Policlorados , Estudos Transversais , Humanos , Bifenilos Policlorados/toxicidade , Saúde Pública
14.
Environ Toxicol ; 37(2): 245-255, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34717031

RESUMO

Vinyl chloride (VC) is an organochlorine mainly used to manufacture its polymer polyvinyl chloride, which is extensively used in the manufacturing of consumer products. Recent studies suggest that chronic low dose VC exposure affects glucose homeostasis in high fat diet-fed mice. Our data suggest that even in the absence of high fat diet, exposure to VC (0.8 ppm, 6 h/day, 5 day/week, for 12 weeks) induces glucose intolerance (1.0 g/kg, i.p.) in male C57BL/6 mice. This was accompanied with the depletion of hepatic glutathione and a modest increase in lung interstitial macrophages. VC exposure did not affect the levels of circulating immune cells, endothelial progenitor cells, platelet-immune cell aggregates, and cytokines and chemokines. The acute challenge of VC-exposed mice with LPS did not affect lung immune cell composition or plasma IL-6. To examine the effect of VC exposure on vascular inflammation and atherosclerosis, LDL receptor-KO mice on C57BL/6 background maintained on western diet were exposed to VC for 12 weeks (0.8 ppm, 6 h/day, 5 day/week). Unlike the WT C57BL/6 mice, VC exposure did not affect glucose tolerance in the LDL receptor-KO mice. Plasma cytokines, lesion area in the aortic valve, and markers of lesional inflammation in VC-exposed LDL receptor-KO mice were comparable with the air-exposed controls. Collectively, despite impaired glucose tolerance and modest pulmonary inflammation, chronic low dose VC exposure does not affect surrogate markers of cardiovascular injury, LPS-induced acute inflammation in C57BL/6 mice, and chronic inflammation and atherosclerosis in the LDL receptor-KO mice.


Assuntos
Doenças Cardiovasculares , Cloreto de Vinil , Animais , Dieta Hiperlipídica , Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Cloreto de Vinil/toxicidade
15.
Toxicol Sci ; 185(1): 50-63, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34668566

RESUMO

Occupational exposures to volatile organic compounds (VOCs) have been associated with numerous health complications including steatohepatitis and liver cancer. However, the potential impact of environmental/residential VOC exposures on liver health and function is largely unknown. To address this knowledge gap, the objective of this cross-sectional study is to investigate associations between VOCs and liver injury biomarkers in community residents. Subjects were recruited from six Louisville neighborhoods, and informed consent was obtained. Exposure biomarkers included 16 creatinine-adjusted urinary metabolites corresponding to 12 parent VOCs. Serological disease biomarkers measured included cytokertain-18 (K18 M65 and M30), liver enzymes, and direct bilirubin. Associations between exposure and disease biomarkers were assessed using generalized linear models. Smoking status was confirmed through urinary cotinine levels. The population comprised of approximately 60% females and 40% males; White persons accounted 78% of the population; with more nonsmokers (n = 413) than smokers (n = 250). When compared with nonsmokers, males (45%) and Black persons (26%) were more likely to be smokers. In the overall population, metabolites of acrolein, acrylonitrile, acrylamide, 1,3-butadiene, crotonaldehyde, styrene, and xylene were positively associated with alkaline phosphatase. These associations persisted in smokers, with the exception of crotonaldehyde, and addition of N,N-dimethylformamide and propylene oxide metabolites. Although no positive associations were observed for K18 M30, the benzene metabolite was positively associated with bilirubin, irrespective of smoking status. Taken together, the results demonstrated that selected VOCs were positively associated with liver injury biomarkers. These findings will enable better risk assessment and identification of populations vulnerable to liver disease.


Assuntos
Compostos Orgânicos Voláteis , Biomarcadores/urina , Estudos Transversais , Exposição Ambiental/efeitos adversos , Feminino , Humanos , Fígado/metabolismo , Masculino , Compostos Orgânicos Voláteis/metabolismo
16.
Environ Epigenet ; 7(1): dvab008, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34548932

RESUMO

Exposure to a single dose of polychlorinated biphenyls (PCBs) and a 12-week high-fat diet (HFD) results in nonalcoholic steatohepatitis (NASH) in mice by altering intracellular signaling and inhibiting epidermal growth factor receptor signaling. Post-transcriptional chemical modification (PTM) of RNA regulates biological processes, but the contribution of epitranscriptomics to PCB-induced steatosis remains unknown. This study tested the hypothesis that PCB and HFD exposure alters the global RNA epitranscriptome in male mouse liver. C57BL/6J male mice were fed a HFD for 12 weeks and exposed to a single dose of Aroclor 1260 (20 mg/kg), PCB 126 (20 µg/kg), both Aroclor 1260 and PCB 126 or vehicle control after 2 weeks on HFD. Chemical RNA modifications were identified at the nucleoside level by liquid chromatography-mass spectrometry. From 22 PTM global RNA modifications, we identified 10 significant changes in RNA modifications in liver with HFD and PCB 126 exposure. Only two modifications were significantly different from HFD control liver in all three PCB exposure groups: 2'-O-methyladenosine (Am) and N(6)-methyladenosine (m6A). Exposure to HFD + PCB 126 + Aroclor 1260 increased the abundance of N(6), O(2)-dimethyladenosine (m6Am), which is associated with the largest number of transcript changes. Increased m6Am and pseudouridine were associated with increased protein expression of the writers of these modifications: Phosphorylated CTD Interacting Factor 1 (PCIF1) and Pseudouridine Synthase 10 (PUS10), respectively, in HFD + PCB 126- + Aroclor 1260-exposed mouse liver. Increased N1-methyladenosine (m1A) and m6A were associated with increased transcript levels of the readers of these modifications: YTH N6-Methyladenosine RNA Binding Protein 2 (YTHDF2), YTH Domain Containing 2 (YTHDC2), and reader FMRP Translational Regulator 1 (FMR1) transcript and protein abundance. The results demonstrate that PCB exposure alters the global epitranscriptome in a mouse model of NASH; however, the mechanism for these changes requires further investigation.

17.
Toxicol Rep ; 8: 536-547, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777700

RESUMO

Polychlorinated biphenyls (PCBs) are persistent organic pollutants associated with non-alcoholic fatty liver disease (NAFLD). Previously, we demonstrated that the PCB mixture, Aroclor1260, exacerbated NAFLD, reflective of toxicant-associated steatohepatitis, in diet-induced obese mice, in part through pregnane-xenobiotic receptor (PXR) and constitutive androstane receptor (CAR) activation. Recent studies have also reported PCB-induced changes in the gut microbiome that consequently impact NAFLD. Therefore, the objective of this study is to examine PCB effects on the gut-liver axis and characterize the role of CAR and PXR in microbiome alterations. C57Bl/6 (wildtype, WT), CAR and PXR knockout mice were fed a high fat diet and exposed to Aroclor1260 (20 mg/kg, oral gavage, 12 weeks). Metagenomics analysis of cecal samples revealed that CAR and/or PXR ablation increased bacterial alpha diversity regardless of exposure status. CAR and PXR ablation also increased bacterial composition (beta diversity) versus WT; Aroclor1260 altered beta diversity only in WT and CAR knockouts. Distinct changes in bacterial abundance at different taxonomic levels were observed between WT and knockout groups; however Aroclor1260 had modest effects on bacterial abundance within each genotype. Notably, both knockout groups displayed increased Actinobacteria and Verrucomicrobia abundance. In spite of improved bacterial diversity, the knockout groups however failed to show protection from PCB-induced hepato- and intestinal- toxicity including decreased mRNA levels of ileal permeability markers (occludin, claudin3). In summary, CAR and PXR ablation significantly altered gut microbiome in diet-induced obesity while Aroclor1260 compromised intestinal integrity in knockout mice, implicating interactions between PCBs and CAR, PXR on the gut-liver axis.

18.
Environ Health Perspect ; 129(3): 37010, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33788613

RESUMO

BACKGROUND: Polychlorinated biphenyls (PCBs) are signaling disrupting chemicals that exacerbate nonalcoholic steatohepatitis (NASH) in mice. They are epidermal growth factor receptor (EGFR) inhibitors that enhance hepatic inflammation and fibrosis in mice. OBJECTIVES: This study tested the hypothesis that epidermal growth factor (EGF) administration can attenuate PCB-related NASH by increasing hepatic EGFR signaling in a mouse model. METHODS: C57BL/6 male mice were fed a 42% milk fat diet and exposed to Aroclor 1260 (20mg/kg) or vehicle for 12 wk. EGF (0.2µg/g) or vehicle were administered daily for 10 d starting at study week 10. Liver and metabolic phenotyping were performed. The EGF dose was selected based on results of an acute dose-finding study (30 min treatment of EGF at 0.2, 0.02, 0.002µg/g of via intraperitoneal injection). Hepatic phosphoproteomic analysis was performed using liver tissue from this acute study to understand EGFR's role in liver physiology. RESULTS: Markers of EGFR signaling were higher in EGF-treated mice. EGF+PCB-exposed mice had lower hepatic free fatty acids, inflammation, and fibrosis relative to PCB-only exposed mice. EGF-treated mice had higher plasma lipids, with no improvement in hepatic steatosis, and an association with higher LXR target gene expression and de novo lipogenesis. EGF-treated mice showed more severe hyperglycemia associated with lower adiponectin levels and insulin sensitivity. EGF-treated mice had higher hepatic HNF4α, NRF2, and AhR target gene expression but lower constitutive androstane receptor and farnesoid X receptor target gene expression. The hepatic EGF-sensitive phosphoproteome demonstrated a role for EGFR signaling in liver homeostasis. DISCUSSION: These results validated EGFR inhibition as a causal mode of action for PCB-related hepatic inflammation and fibrosis in a mouse model of NASH. However, observed adverse effects may limit the clinical translation of EGF therapy. More data are required to better understand EGFR's underinvestigated roles in liver and environmental health. https://doi.org/10.1289/EHP8222.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Bifenilos Policlorados , Animais , Fator de Crescimento Epidérmico , Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Bifenilos Policlorados/toxicidade
19.
Acta Pharm Sin B ; 11(12): 3806-3819, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35024308

RESUMO

Dioxin-like molecules have been associated with endocrine disruption and liver disease. To better understand aryl hydrocarbon receptor (AHR) biology, metabolic phenotyping and liver proteomics were performed in mice following ligand-activation or whole-body genetic ablation of this receptor. Male wild type (WT) and Ahr -/- mice (Taconic) were fed a control diet and exposed to 3,3',4,4',5-pentachlorobiphenyl (PCB126) (61 nmol/kg by gavage) or vehicle for two weeks. PCB126 increased expression of canonical AHR targets (Cyp1a1 and Cyp1a2) in WT but not Ahr -/-. Knockouts had increased adiposity with decreased glucose tolerance; smaller livers with increased steatosis and perilipin-2; and paradoxically decreased blood lipids. PCB126 was associated with increased hepatic triglycerides in Ahr -/-. The liver proteome was impacted more so by Ahr -/- genotype than ligand-activation, but top gene ontology (GO) processes were similar. The PCB126-associated liver proteome was Ahr-dependent. Ahr principally regulated liver metabolism (e.g., lipids, xenobiotics, organic acids) and bioenergetics, but it also impacted liver endocrine response (e.g., the insulin receptor) and function, including the production of steroids, hepatokines, and pheromone binding proteins. These effects could have been indirectly mediated by interacting transcription factors or microRNAs. The biologic roles of the AHR and its ligands warrant more research in liver metabolic health and disease.

20.
Toxicol Appl Pharmacol ; 409: 115301, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33096110

RESUMO

Polychlorinated biphenyl (PCB)126 and perfluorooctane sulfonic acid (PFOS) are halogenated organic pollutants of high concern. Exposure to these chemicals is ubiquitous, and can lead to potential synergistic adverse effects in individuals exposed to both classes of chemicals. The present study was designed to identify interactions between PCB126 and PFOS that might promote acute changes in inflammatory pathways associated with cardiovascular disease and liver injury. Male C57BL/6 mice were exposed to vehicle, PCB126, PFOS, or a mixture of both pollutants. Plasma and liver samples were collected at 48 h after exposure. Changes in the expression of hepatic genes involved in oxidative stress, inflammation, and atherosclerosis were investigated. Plasma and liver samples was analyzed using untargeted lipidomic method. Hepatic mRNA levels for Nqo1, Icam1, and PAI1 were significantly increased in the mixture-exposed mice. Plasma levels of PAI1, a marker of fibrosis and thrombosis, were also significantly elevated in the mixture-exposed group. Liver injury was observed only in the mixture-exposed mice. Lipidomic analysis revealed that co-exposure to the mixture enhanced hepatic lipid accumulation and elevated oxidized phospholipids levels. In summary, this study shows that acute co-exposure to PCB126 and PFOS in mice results in liver injury and increased cardiovascular disease risk.


Assuntos
Ácidos Alcanossulfônicos/efeitos adversos , Biomarcadores/metabolismo , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fluorocarbonos/efeitos adversos , Bifenilos Policlorados/efeitos adversos , Animais , Poluentes Ambientais/efeitos adversos , Fibrose/induzido quimicamente , Fibrose/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Risco , Trombose/induzido quimicamente , Trombose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...